Cómo un algoritmo mandó a un hombre a la cárcel por asesinato sin necesidad de testigos

En Estados Unidos están usando un algoritmo que ayuda a determinar los sonidos de disparos de arma de fuego, aunque jueces están desestimando la herramienta.

Avatar del

Por: Garance Burke, Martha Mendoza, Juliet Linderman y Michael Tarm / AP

Michael Williams estuvo encarcelado casi un año luego de que el algoritmo de una tecnología de ShotSpotter determinó que disparó contra un joven. Foto: AP 

Michael Williams estuvo encarcelado casi un año luego de que el algoritmo de una tecnología de ShotSpotter determinó que disparó contra un joven. Foto: AP 

Chicago, Estados Unidos.- La esposa de Michael Williams le rogó que recordara los viajes a pescar con sus nietos, cómo solía trenzar su cabello, cualquier cosa para devolverlo a su mundo fuera de los muros de concreto de la prisión del Condado Cook.

Las tres llamadas diarias que podía hacerle a ella se habían convertido en un salvavidas, pero cuando se redujeron a dos, luego a una, y después a unas pocas a la semana, Williams, de 65 años, sintió que no podía seguir adelante. Planeó quitarse la vida con un alijo de píldoras que había almacenado en su dormitorio.

Williams fue encarcelado en agosto pasado, acusado de matar a un joven de su vecindario que le pidió que lo llevara en su automóvil una de las noches de disturbios por la brutalidad policial en mayo. Pero la evidencia clave contra Williams no provino de testigos o un informante, sino de un video de seguridad sin sonido que mostraba un automóvil que cruzaba una intersección y de un fuerte ruido explosivo captado por una red de micrófonos de vigilancia. Los fiscales dijeron que la tecnología, que utilizaba un algoritmo secreto que analizaba ruidos detectados por sensores, indicó que Williams le disparó y mató al hombre. 

Seguí tratando de entender cómo podían salirse con la suya usando tecnología como esa en mi contra", dijo Williams, en sus primeras declaraciones públicas sobre su calvario. "Eso no es justo".

Williams permaneció tras las rejas durante casi un año antes de que un juez desestimara el caso en su contra el mes pasado a petición de los fiscales, quienes finalmente dijeron tener evidencia insuficiente. 

Cuando un algoritmo falla, pero sirve para tomar decisiones públicas importantes

La experiencia de Williams subraya los impactos en el mundo real de la creciente dependencia de algoritmos para ayudar a tomar decisiones que tienen impactos significativos en la vida pública. En ninguna parte es esto más evidente que en la aplicación de la ley, que ha recurrido a empresas de tecnología como la compañía de detección de disparos ShotSpotter para combatir el crimen. Evidencias procedentes de ShotSpotter han sido admitidas cada vez más en casos judiciales alrededor de Estados Unidos, y actualmente suman unos 200. El sitio web de ShotSpotter dice que es "un líder en soluciones de tecnología policial de precisión" que ayuda a detener la violencia armada mediante el uso de "sensores, algoritmos e inteligencia artificial" para clasificar 14 millones de sonidos en su base de datos como disparos de armas u otra cosa. 

Sin embargo, una investigación de The Associated Press, con base en la revisión de miles de documentos internos, correos electrónicos, presentaciones y contratos confidenciales, junto con entrevistas a docenas de defensores públicos en comunidades donde se ha desplegado ShotSpotter, ha identificado una serie de fallas graves en el uso de ShotSpotter como apoyo probatorio para los fiscales. 

La investigación de la AP encontró que el sistema no necesariamente detecta los disparos en vivo justo bajo sus micrófonos, o clasifica erróneamente como disparos de arma los sonidos de los fuegos artificiales o de los escapes de los autos. Reportes forenses elaborados por empleados de ShotSpotter han sido utilizados en los tribunales para afirmar indebidamente que un acusado disparó a agentes de la policía, o proporcionar detalles inexactos sobre el número de disparos realizados. En varios casos, los jueces han desestimado la evidencia. 

Los algoritmos patentados de ShotSpotter son el principal punto de venta de la compañía, y con frecuencia promociona la tecnología como virtualmente infalible en sus materiales de mercadotecnia. Pero cómo funciona exactamente el sistema cerrado de la empresa privada es algo resguardado como secreto comercial, una caja negra en gran medida inescrutable para el público, los jurados y las juntas de supervisión de la policía. 

Los métodos de la empresa para identificar disparos de armas no siempre son guiados únicamente por la tecnología. Los empleados de ShotSpotter pueden cambiar, y con frecuencia lo hacen, la fuente de los sonidos identificados por sus sensores después de escuchar grabaciones de audio, lo que introduce la posibilidad de sesgo humano en el algoritmo de detección de disparos. Los empleados pueden modificar la ubicación o número de tiros disparados a petición de la policía, según los registros judiciales. Y en el pasado, los mismos despachadores de la ciudad o los policías podían realizar también algunos de estos cambios. 

En medio de un debate nacional sobre el sesgo racial en la policía, los defensores de la privacidad y los derechos civiles dicen que el sistema de ShotSpotter y otras tecnologías basadas en algoritmos que son utilizadas para establecer todo, desde las sentencias de prisión hasta las reglas de libertad condicional, carecen de transparencia y supervisión, y muestran por qué el sistema de justicia penal no debería delegar algunas de las decisiones más importantes de la sociedad a códigos informáticos.

Cuando se le cuestionó sobre los errores potenciales del algoritmo de la empresa, Ralph Clark, director ejecutivo de ShotSpotter, declinó discutir los detalles específicos sobre el uso de inteligencia artificial (IA), y dijo que "no es realmente relevante".

El punto es que cualquier cosa que finalmente se produzca como un disparo de arma tiene que tener ojos y oídos encima", dijo Clark en una entrevista. "Ojos y oídos humanos, ¿ok?".

Esta historia, con el apoyo del Pulitzer Center for Crisis Reporting, es parte de "Rastreado", una serie en curso de The Associated Press que investiga el poder y las consecuencias de las decisiones impulsadas por algoritmos en la vida cotidiana de las personas. 

La tecnología de algoritmo en 110 ciudades en Estados Unidos

Los jefes de la policía llaman a ShotSpotter un cambio en el terreno de juego. La tecnología, que ha sido instalada en alrededor de 110 ciudades de los Estados Unidos, grandes y pequeñas, puede costar hasta 95,000 dólares por milla cuadrada al año. El sistema generalmente es colocado a petición de funcionarios locales en los vecindarios considerados de más alto riesgo por la violencia armada, que con frecuencia son en comunidades con más población negra y latina. Los funcionarios encargados de la aplicación de la ley dicen que ayuda a que sus oficiales lleguen más rápido a las escenas del crimen, y ayuda a las agencias de seguridad pública a desplegar mejor sus recursos. 

ShotSpotter se ha convertido en uno de los engranajes más importantes en nuestra maquinaria para enfrentar la violencia armada", dijo George Kral, jefe de la Policía de Toledo, Ohio, durante una conferencia de la Asociación Internacional de Jefes de Policía (Internacional Association of Chiefs of Police) de 2019, en Chicago. 

Los investigadores que analizaron los impactos de ShotSpotter en las comunidades donde es utilizado llegaron a una conclusión diferente. Un estudio publicado en abril en la Revista de Salud Urbana (Journal of Urban Health) examinó ShotSpotter en 68 condados grandes y metropolitanos de 1999 a 2016, la revisión más grande hasta ahora. Encontraron que la tecnología no reducía la violencia armada ni incrementaba la seguridad de la comunidad. 

La evidencia que hemos producido sugiere que la tecnología no reduce la violencia armada en el largo plazo, y la implementación de la tecnología no conduce a un aumento de arrestos relacionados con asesinatos o armas", dijo Mitch Doucette, el autor principal.

Cómo ayuda el algoritmo de ShotSpotter contra el crimen

ShotSpotter instala sus sensores acústicos en edificios y postes telefónicos y de luminarias. Empleados en salas oscuras de acceso restringido estudian cientos de miles de alertas de disparos en múltiples pantallas de computadora en la oficina central de la empresa, a 56 km al sur de San Francisco, o en una oficina más nueva en Washington, D. C. 

Las herramientas forenses como el ADN y las pruebas de balística utilizadas por los fiscales tienen metodologías que han sido examinadas con minucioso detalle durante décadas, pero ShotSpotter afirma que su programa de cómputo es de propiedad confidencial, por lo que no hace público su algoritmo. La política de privacidad de la empresa dice que las ubicaciones de los sensores no son divulgadas a los departamentos de policía, aunque miembros de la comunidad pueden verlos en los postes de luminarias. La empresa ha protegido los datos y registros que revelan el funcionamiento interno del sistema, lo que deja a los abogados defensores sin manera de cuestionar la tecnología para entender las especificaciones de cómo funciona. 

Tenemos el derecho constitucional de confrontar a todos los testigos y la evidencia en nuestra contra, pero en este caso, el sistema ShotSpotter es el acusador y no hay manera de determinar si es preciso, monitoreado, calibrado o si alguien agregó algo", dijo Katie Higgins, abogada defensora que ha luchado con éxito contra la evidencia de ShotSpotter. "La consecuencia más seria es ser condenado por un delito que usted no cometió utilizando esto como evidencia". 

La empresa emergente de Silicon Valley fue lanzada hace 25 años con el respaldo del capitalista de riesgo Gary Lauder, heredero de la fortuna de la empresa de maquillaje Estée Lauder. Actualmente, el multimillonario todavía es el principal inversionista de la empresa. 

El perfil de ShotSpotter ha crecido en años recientes. 

Estados Unidos así combate el crimen con algoritmos y tecnología

El gobierno de los Estados Unidos ha gastado más de 6,9 millones de dólares en sistemas de detección de disparos de armas, incluido ShotSpotter, de fondos de subvenciones discrecionales y dirigidos por el Congreso, dijo el Departamento de Justicia en respuesta a preguntas de la AP. Los estados y gobiernos locales han gastado más millones de dólares de impuestos federales para comprar el sistema. 

El precio de las acciones de la empresa se ha más que duplicado desde que salió a la bolsa en 2017, y registró ingresos de casi 30 millones de dólares en la primera mitad de 2021. La página de ShotSpotter refiere que operan en 119 localidades en Estados Unidos, el Caribe y Sudáfrica. También dice que sus 18.000 sensores cubren 810 millas cuadradas o poco más de 2.000 kilómetros cuadrados. 

En 2018, adquirió una empresa de vigilancia predictiva llamada HunchLab, que integra sus modelos de IA con los datos de detección de disparo de armas de ShotSpotter para, supuestamente, prevenir el crimen antes de que ocurra. 

Ese sistema puede "predecir cuándo y dónde es probable que ocurran crímenes y recomienda patrullas y tácticas específicas que pueden disuadir estos eventos", según el informe anual de 2020 que la empresa presentó ante la Comisión de Bolsa y Valores de Estados Unidos (SEC por sus siglas en inglés). La empresa dijo que planea expandirse a Latinoamérica y otras regiones del mundo. Recientemente nombró en su consejo a Roberta Jacobson, la exembajadora de los Estados Unidos en México.

A fines del año pasado, una comisión de la administración Trump sobre el orden público apremió a aumentar la financiación para sistemas como ShotSpotter para "combatir el crimen y la violencia con armas de fuego". 

Y entre un aumento en los homicidios, esta primavera, el gobierno de Joe Biden nominó a David Chipman, un exejecutivo de ShotSpotter, para dirigir la Oficina de Alcohol, Tabaco, Armas de Fuego y Explosivos (ATF, por sus siglas en inglés).

En junio, el presidente Biden alentó a los alcaldes a utilizar fondos del Plan de Rescate Estadounidense (American Rescue Plan), dirigido a acelerar la recuperación por la pandemia en los Estados Unidos, para comprar sistemas de detección de disparos de armas "para ver y detener mejor la violencia con armas de fuego en sus comunidades". 

'Cómo si algo dentro de mí acabara de morir', dice Williams encarcelado por el algoritmo

En una agradable noche de domingo de mayo de 2020, Williams y su esposa Jacqueline Anderson se instalaron en su edificio de apartamentos en el vecindario South Side de Chicago. Alimentaron a su rottweiler Lily y su pastor alemán Shibey. Anderson se quedó dormida. Williams dijo que salió a comprar cigarrillos en una gasolinera local. 

Los saqueadores habían llegado allí primero. Seis días antes, en Minneápolis, George Floyd había sido asesinado por el policía Derek Chauvin. A 643 km, en el vecindario de Williams, la indignación se desbordó. Las tiendas fueron destruídas, los escaparates destrozados y se provocaron algunos incendios. 

Williams encontró la gasolinera destrozada, y dijo que dio vuelta en U para dirigirse a su casa en la avenida South Stony Island. Antes de llegar a la Calle 63 Este, Williams dijo que Safarian Herring, un joven de 25 años a quien había visto en el vecindario, le hizo señas para que lo llevara en su automóvil. 

No me sentí amenazado ni nada porque lo había visto antes por ahí. Así que dije que sí. Y se sentó en el asiento del copiloto y partimos", dijo Williams. 

Williams dijo a la policía que cuando se acercaba a una intersección, otro vehículo se detuvo junto a su automóvil, según los documentos que la AP obtuvo mediante una solicitud de registros abiertos. Un hombre en el asiento del copiloto disparó un tiro. La bala no alcanzó a Williams, pero sí a su pasajero. 

"Me sorprendió mucho, lo único que podía hacer era dejarme caer dentro de mi auto", dijo. Mientras Herring sangraba en el asiento por las heridas en un costado de su cabeza, Williams se pasó un semáforo en alto para escapar. 

Le gritaba a mi pasajero: '¿Estás bien?'", dijo Williams. "No respondió". 

Condujo a su pasajero al hospital St. Bernard, donde trabajadores médicos llevaron a Herring a la sala de emergencias y los doctores lucharon para salvarle la vida. 

Dos semanas antes de ser recogido por Williams, Samona Nicholson, la madre de Herring, dijo que el aspirante a chef había sobrevivido a un tiroteo en una parada de autobús. Nicholson, quien llamaba "Pook" a su hijo, hizo arreglos para que se quedara con un familiar donde pensó que estaría a salvo. 

Los médicos declararon muerto a Herring el 2 de junio de 2020, a las 2:53 p.m.

La esposa de Williams dijo que varios días después del tiroteo, su marido se acurrucaba en su cama, recordaba lo ocurrido y oraba por su pasajero.

Tres meses después de la muerte de Herring, la policía apareció. Williams recuerda que los oficiales le dijeron que querían llevarlo a la estación para hablar y aseguraron que no hizo nada malo. 

Tenía antecedentes criminales y pasó tres periodos diferentes tras las rejas por intento de asesinato, robo y descarga de arma de fuego, según muestran los registros.

Todo eso ocurrió cuando era un hombre más joven. Williams dijo que había seguido adelante con su vida, evitado los problemas legales desde su última liberación, hacía más de 15 años, y trabajado en varios empleos, incluida la limpieza de un lote de grúas de la policía.

En la estación de policía, los detectives lo interrogaron sobre la noche en la que dispararon a Herring, y después lo llevaron a una celda. 

"Simplemente dijeron que me estaban acusando de asesinato en primer grado", dijo Williams. "Cuando me dijo eso, fue como si algo dentro de mí acabara de morir".

Cómo el algoritmo y policías apuntaron hacia Williams

En la noche en que Williams salió por cigarrillos, los sensores de ShotSpotter identificaron un ruido fuerte en el sistema inicialmente dijo provenía de la dirección 5700 S. Lake Shore Drive, cerca del histórico Museo de Ciencia e Industria de Chicago, junto al lago Michigan, según un alerta que la compañía entregó a la policía. 

Ese material ancló la teoría de los fiscales de que Williams disparó a Herring dentro de su automóvil, aunque el informe complementario de la policía no citó un motivo ni mencionó a ningún testigo ocular. Tampoco se encontró un arma en la escena del crimen. 

Los fiscales también se apoyaron en un video que mostraba que el automóvil de Williams se pasó un semáforo en rojo, al igual que otro automóvil que parecía tener las ventanillas subidas, lo que descartaba la posibilidad de que el disparo proviniera del asiento del copiloto del otro vehículo, dijeron. 

La Policía de Chicago no respondió a una solicitud de la AP para comentar sobre el caso. La Oficina del Fiscal del estado en el condado de Cook señaló en un comunicado que después de cuidadosas revisiones, los fiscales "concluyeron que la totalidad de la evidencia era insuficiente para cumplir con nuestra carga de la prueba", pero no contestó preguntas específicas sobre el caso.

A medida que los sistemas de detección de disparos de armas de ShotSpotter se extienden por el país, también lo ha hecho su uso como evidencia forense en las salas de los tribunales: unas 200 veces en 20 estados desde 2010, 91 de esos casos apenas en los últimos tres años, dijo la compañía. 

Nuestros datos compilados con nuestro análisis de expertos ayudan a los fiscales a realizar condenas", dijo un comunicado de prensa reciente de ShotSpotter. Incluso durante la pandemia, ShotSpotter participó en 18 casos judiciales, algunos a través de Zoom, según una presentación reciente que la empresa hizo para sus inversionistas. 

Pero, aunque su uso se haya extendido en los tribunales, la tecnología de ShotSpotter ha atraído el escrutinio. 

Por un lado, el algoritmo que analiza los sonidos para distinguir los disparos de armas de otros ruidos nunca ha sido revisado por académicos o expertos externos. 

La preocupación por el uso de ShotSpotter como evidencia directa es que simplemente no existen estudios externos que establezcan la validez o confiabilidad de la tecnología. Nada", dijo Tania Brief, abogada de planta de la organización sin fines de lucro El Proyecto Inocente (The Innocence Project), que busca revertir condenas erróneas.

Cuando el algoritmo confunde balazos con otros sonidos

Un estudio de 2011 encargado por la empresa encontró que los contenedores de basura, camiones, motocicletas, helicópteros, fuegos artificiales, construcciones, recolección de basura y campanas de iglesias han disparado alertas de falsos positivos al confundir sus sonidos con disparos de armas de fuego. Clark dijo que la empresa mejora constantemente su filtrado de audio, pero el sistema todavía arroja un pequeño porcentaje de falsos positivos. 

En el pasado, estas alertas falsas —y la falta de alertas— ha llevado a ciudades desde Charlotte, Carolina del Norte, hasta San Antonio, Texas, a dar por terminados sus contratos con ShotSpotter, encontró la AP. 

En Fall River, Massachusetts, la policía dijo que ShotSpotter funcionaba menos del 50% del tiempo y no registró los siete disparos en un asesinato en el centro de la ciudad en 2018. Los resultados no mejoraron con el tiempo, y más tarde ese año, ShotSpotter apagó su sistema. 

El distrito de escuelas públicas en Fresno, California, terminó su contrato el año pasado, después de pagar 1.25 millones de dólares a lo largo de cuatro años, y lo encontró demasiado costoso. Además, a los padres y a los miembros de la junta les preocupaba que los fondos del distrito que se suponía debían ayudar a estudiantes con necesidades de asistencia eran utilizados para pagar por ShotSpotter, dijo Genoveva Islas, consejera de la junta escolar.

"Estábamos en el punto donde George Floyd había sido asesinado y había mucha presión sobre el racismo y la discriminación en el distrito. Había un cuestionamiento creciente sobre esa inversión en particular", dijo Islas. 

Algunos tribunales tampoco han quedado muy impresionados con el sistema ShotSpotter. En 2014, un juez en Richmond, California, no permitió que su utilizara evidencia de ShotSpotter durante un caso de conspiración de asesinato entre pandillas, aunque el hombre acusado, Todd Gillard, fue declarado culpable de estar involucrado en un tiroteo desde un vehículo. 

El testimonio experto de que un arma fue disparada en una ubicación particular en un momento específico, con base en la tecnología de ShotSpotter, no es admisible en los tribunales actualmente porque no ha alcanzado, en este punto, la aceptación general en la comunidad científica relevante", dictaminó John Keneddy, juez de la Corte Superior de Contra Costa.

En un caso de Chicago, los fiscales tenían videos de vigilancia del pandillero Ernesto Godinez en un vecindario donde le dispararon a un agente de la ATF al anochecer —pero ninguno mostraba que él de hecho disparara un arma—. En el juicio en 2019, presentaron datos de ShotSpotter para mostrar que los disparos se originaron en el lugar donde la evidencia indicaba que estaba Godinez cuando sonaron los disparos. Este mes, una corte federal de apelaciones dictaminó que un juez de primera instancia erró al no examinar la confiabilidad de los datos de ShotSpotter antes de permitir que los jurados la escucharan. Sin embargo, el panel dividido de tres jurados concluyó que otra evidencia que presentaron los fiscales era suficiente para mantener la condena de Godinez.

ShotSpotter dice que constantemente afina su modelo de aprendizaje automático para reconocer qué es y qué no es un sonido de disparo al dejar que detectives e investigadores agreguen observaciones de la escena del crimen a su sistema. Como parte de ese proceso, que ellos llaman "verdad en el terreno", ShotSpotter pide a patrulleros que agreguen y anoten casquillos de bala, agujeros de bala, recopilen testimonios de testigos y otra "evidencia de disparos de armas" utilizando su programa de cómputo. Los oficiales pueden agregar lo que encuentran directamente al sistema. 

Tenemos la oportunidad de que la clasificación automática sea mejor y mejor y mejor porque tenemos ciclos de retroalimentación de humanos en tiempo real", dijo Clark. 

Varios expertos advirtieron que entrenar a un algoritmo con base en un conjunto de observaciones presentadas por la policía pone en riesgo de contaminar al modelo si los agobiados oficiales —quizá sin darse cuenta— lo alimentan con datos incompletos o incorrectos. 

"Estoy un poco horrorizada", dijo Clare Garvie, asociada senior del Centro sobre Privacidad y Tecnología (Center on Privacy and Technology) en la escuela de derecho de la Universidad Georgetown. "Usted está creando una incertidumbre inherente en ese sistema y le está diciendo a ese sistema que está bien. Está contaminando la confiabilidad de su sistema". 

ShotSpotter dijo que entre más datos recibe de la policía, mas preciso se vuelve su modelo, que dice es acertado el 97% de las veces.

"En el pequeño número de casos en los que ShotSpotter es incorrecto, proporcionar retroalimentación al algoritmo puede mejorar su precisión", dijo la empresa. 

Más allá del algoritmo de ShotSpotter, se han planteado otras cuestiones sobre cómo opera la empresa. 

Los registros judiciales muestran que, en algunos casos, los empleados han cambiado sonidos detectados por el sistema para decir que son disparos. 

Durante el testimonio en un juicio por tiroteo en Rochester, Nueva York, en 2016, en el que participaron oficiales de la policía, presionaron al ingeniero Paul Greene de ShotSpotter para explicar por qué uno de sus empleados reclasificó los sonidos de un helicóptero como bala. ¿La razón? Dijo que su cliente, en este caso el departamento de policía de Rochester, les dijo que lo hicieran.

El abogado defensor en ese caso quedó estupefacto: "¿Es eso algo que ocurre en el curso regular del negocio en ShotSpotter?", preguntó.

"Sí, lo es. Pasa todo el tiempo", dijo Greene. "Típicamente, usted sabe, confiamos en que nuestros clientes encargados del cumplimiento de la ley sean verdaderamente francos y honestos con nosotros".

Al testificar en un juicio por asesinato en San Francisco en 2017, Greene dio un testimonio similar sobre que un analista había cambiado la ubicación de su alerta inicial a una cuadra de distancia, con lo que repentinamente coincidía con la escena del crimen.

No es perfecto. El punto en el mapa es solo un punto de partida", dijo. 

En el caso de Williams, la evidencia en las audiencias previas muestra que ShotSpotter inicialmente dijo que el ruido captado por el sensor era un petardo, que el algoritmo de la compañía determinó con un 98% de confianza. Pero un empleado de ShotSpotter volvió a etiquetar el ruido como un disparo. 

Más tarde, Walter Collier, ingeniero senior de soporte técnico de ShotSpotter, cambió la dirección reportada del sonido a la calle por donde Williams conducía, a más o menos 1.6 km de distancia, según los documentos judiciales. ShotSpotter dijo que Collier corrigió el informe para que coincidiera con la ubicación real que los sensores habían identificado.

Collier había trabajado para el Departamento de Policía de Chicago durante más de dos décadas antes de unirse a la empresa, de acuerdo con su perfil en LinkedIn. Después de que Williams fuera sentenciado a prisión, su abogado solicitó más información sobre la capacitación de Collier usando el sistema de ShotSpotter. El abogado, Brendan Max, dijo que le sorprendió la respuesta de la empresa. 

En los documentos judiciales, ShotSpotter reconoció: "Nuestros expertos son capacitados usando una variedad de sesiones de entrenamiento 'en el trabajo', y la transmisión de conocimiento de nuestros científicos y otros empleados experimentados. Como tales, no existen materiales de capacitación oficiales o formales para nuestros expertos forenses". 

Los funcionarios encargados del cumplimiento de la ley en Chicago aún apoyan su uso de ShotSpotter. El contrato de Chicago, de tres años y 33 millones de dólares, firmado en 2018, convierte a la ciudad en el principal cliente de ShotSpotter. Ahora, ShotSpotter se encuentra en el corazón del "ciclo de inteligencia-acción" del departamento de policía para la vigilancia predictiva que utiliza alertas de disparos para "identificar áreas de riesgo", según una presentación de 2019 obtenida por la AP. 

A fines del mes pasado, el 22 de julio, el fiscal general Merrick Garland voló a Chicago para anunciar una nueva iniciativa para combatir la violencia con armas de fuego. El día siguiente recorrió un recinto policial y observó a los funcionarios mostrarle cómo usaban ShotSpotter.

ShotSpotter dice que advirtió en no confiar tanto en el algoritmo

Al siguiente día, Williams entró cojeando a la Sala 500, apoyado en su bastón de madera, vestido con un atuendo de prisión color marrón claro y sandalias, con un ayudante de sheriff casi sobre él. Había estado encerrado durante 11 meses.

Williams levantó la cabeza hacia el famoso juez irascible Vincent Gaughan. El veterano de Vietnam de 79 años lo miró desde lo alto de su estrado y dijo a Williams que su caso había sido desestimado. La razón: evidencia insuficiente.

ShotSpotter mantiene que había advertido a los fiscales que no confiaran en su tecnología para detectar disparos realizados dentro de vehículos o edificios. La compañía dijo que el descargo de responsabilidad se puede encontrar en las letras pequeñas de su contrato con la policía de Chicago. 

Sin embargo, la compañía se rehusó a decir en qué punto durante el encarcelamiento de casi un año de Williams se puso en contacto con los fiscales, o por qué preparó un informe forense de un disparo que supuestamente fue realizado en el vehículo de Williams, dado que el sistema tenía problemas para identificar disparos en espacios cerrados. El mismo informe tenía información contradictoria que sugería que la tecnología funcionaba, de hecho, en el interior de los automóviles. Clark, el director ejecutivo de la empresa, se negó a comentar sobre el caso, pero en un comunicado de seguimiento, la empresa fue ambigua y dijo a la AP que bajo "ciertas condiciones" el sistema puede de hecho detectar disparos dentro de los vehículos. 

Max, el abogado de Williams, dijo que los fiscales jamás le revelaron nada de esta información a él, y optaron por retirar los cargos dos meses después de que presentó un citatorio para ShotSpotter por la correspondencia de la compañía con los abogados estatales.

El juez acordó programar una audiencia en las próximas semanas sobre si divulgar el protocolo operativo de ShotSpotter y otros documentos que la empresa quiere mantener en secreto. Max, quien lo solicitó, dijo que dicho material podría ser utilizado para poner en duda la validez y confiabilidad de la evidencia de ShotSpotter en casos de todo el país. 

Mi cliente no merecía ser privado de su libertad en base a evidencia que no era científica y que no fue comprobada", dijo Max. "A juzgar por el historial de evidencia forense defectuosa en nuestros tribunales, no podemos permitir que ShotSpotter sea el que produce condenas equivocadsa ahora".

A las 9 p.m., del 23 de julio, Williams salió de la cárcel del Condado Cook hacia la calurosa noche de Chicago. No tenía teléfono móvil, ni cartera, ni identificación. Las autoridades no le permitieron realizar una llamada ni le devolvieron nada. 

Un vocero de la oficina del sheriff del condado de Cook, que gestiona la cárcel, dijo el jueves que el personal había entregado toda la ropa y los objetos personales de Williams que había en esa instalación y que Williams tenía fácil acceso a teléfonos.

Fue recogido por su abogado. 

Anderson, su esposa desde hace 20 años, lo esperaba en casa. Cuando su esposo bajó del automóvil de su abogado, lo tomó en sus brazos y lloró. 

La primera noche en casa, Anderson cocinó costillas y pollo, pan de maíz y pasta con queso americano. 

Pero Williams no podía comer por sí mismo. Había vencido el COVID-19 dos veces en prisión, pero había desarrollado un temblor incontrolable en la mano que le impedía sostener una cuchara. Así que Anderson lo alimentó. Y sentados juntos en el sofá, se aferró a su brazo para tratar de impedir el temblor.

Por su parte, Samona Nicholson, la madre de Herring, cree que la policía tenía al sospechoso correcto en Williams. Culpa a ShotSpotter por arruinar el caso al transmitir y después retirar lo que llama datos poco sólidos. 

Williams sigue conmocionado por su experiencia. Dijo que ya no se siente seguro en su ciudad natal. Cuando camina por el vecindario busca los pequeños micrófonos que casi lo mandan a prisión de por vida. 

"Los únicos lugares donde se instalan estos dispositivos son en comunidades negras pobres, en ningún otro lugar", dijo. "¿Cuántos de nosotros terminaremos en esta misma situación?". 

Mendoza reportó desde Newark, California. La periodista de The Associated Press Roselyn Romero, en San Luis Obispo, California, contribuyó con este reporte.

8am

Recibe gratis por email las 8 noticias esenciales de AM, antes de las 8:00 a.m.

8am
En esta nota:

Y tú, ¿qué opinas?